ESSAYPHD论文代写团队从事论文作业代写多年,Rcode代写一直都是我们的强项。团队学霸如林,下面由美国top20的计算机PhD为大家介绍一下r语言代写以及Rcode相关介绍。
R语言作为一门开源语言,其简单易学而且又免费的特点,在数据分析领域十分流行。除了统计系,现在一些社科类专业,比如经济学,社会学,政治学,金融学等领域都开始教学R的相关课程。R语言在业界也得到了充分的认可,比如华为,京东,豆瓣,Ebay,阿里等企业都有Rcode和Hadoop结合的数据部门。Rcode在量化投资,促销策略,推荐系统,计算广告,互联网金融,数据分析,甚至云医疗,天文,气象等可视化设计也都是基于R语言开发的。根据IEEE公布的编程语言排名,结合Google的搜索量、Google的趋势、Twitter的点击次数、GitHub的库、Hacker News的帖子等等12个指标的综合考量,R语言已经排名第五。
EssayPhD论文代写团队作为一个专业的PhD兼职平台,我们有专门研究数据分析的相关PhD,研究方向包括Statistical Computing,Numerical Optimization,Data Mining,Business Analytics,Generalized Linear Models,Bayesian Statistics,Machine Learning,Financial Mathematics等等。因此R语言代写(R code代写)是我们团队非常擅长的内容,如果你找市场上的代写中介,很有可能会被坑到,因为这些代写中介根本不懂你的需求,而是简单地把你的作业甩手外包给国内大学生。而你支付的高昂稿费绝大部分已经被代写中介抽成,这样还能期望有什么好的结果呢,因此R语言作业代写和数据分析代写,找EssayPhD团队是不会让您失望的。我们7*24小时在线,客服都是全球的PhD轮流值班,您下单咨询的时候就可以跟专业的STATS的PhD一对一沟通,让您的作业需求得到最充分的理解,轻松拿到高分。
以下为您展示我们R语言代写rcode代写的成功案例,客户的课程是非线性统计模型。

##非线性统计模型代写
library(faraway)
data(meatspec) ##加载数据
#data "meatspec" in library "faraway" is used to
#illustrate RR,PCR and PLSR.
# data size: 215*101, the 101th column is the response,
#while the predictors are the first to 100 columns.
#the first 172 rows are used as trainning dataset,
mm <- apply (meatspec[1:172,], 2, mean) ##数据预处理
mtc<-sweep(meatspec[1:172,],2,mm)
y<-meatspec$fat[1:172]
yc<-mtc[,101]
trainx<-as.matrix(mtc[ ,-101])
mm2 <- apply (meatspec[173:215,], 2, mean)
mtc2<-sweep(meatspec[173:215,],2,mm2)
testx<-as.matrix(mtc2)[,-101]
yt<-mtc2[,101]
##模型评估函数
# root mean square error (rmse) to measure the performance of each method
rmse <- function (x, y) sqrt (mean ( (x-y)^2 ) )
#1. LS estimator 线性模型拟合,专业统计代写
data (meatspec)
mt.lm <- lm (fat~.-1, data=mtc)
summary(mt.lm)$r.squared
#the fit of this model is already very good in terms of R2
#How well does this model do in predicting the observations in the test sample?
rmse (fitted(mt.lm), yc) # rmse for training sample
rmse (predict(mt.lm, mtc2), yt) # rmse for testing sample
#We see that the performance is much worse for the test sample
#Now, it is quite likely that not all 100 predictors are necessary to make a good
#prediction. In fact, some of them might just be adding noise to the prediction and we
#could improve matters by eliminating some of them
kappa(t(trainx)%*%trainx) #severer multicolinearity
#2. Ridge estimator 岭回归模型建立,专业R code代写
gridge <-lm.ridge (yc~trainx-1, lambda =seq(0,5e-8,1e-9))
matplot (gridge$lambda, t(gridge$coef), type="l",lty=1,xlab=expression (lambda),
ylab=expression (hat (beta)))
select(gridge)
abline(v=1.8e-8)
which.min(gridge$GCV)
ypredg <-scale(trainx, center=FALSE,scale=gridge$scales)%*% gridge$coef[, 19] +
mean(meatspec$fat[1:172])
rmse(ypredg,meatspec$fat[1:172])
ytpredg <-scale(testx, center=FALSE, scale=gridge$scales)%*% gridge$coef [, 19] +
mean(meatspec$fat[1:172])
rmse (ytpredg, meatspec$fat[173:215])
# 3. Principal Components Regression 主成分分析回归模型代写
# Now let’s compute the PCA on the training sample predictors:
library (mva)
meatpca <-prcomp(meatspec[1:172, -101])
#We can examine the square roots of the eigenvalues:
round (meatpca$sdev, 3)
#The eigenvectors can be found in the object meatpca$rotation
matplot (1:100, meatpca$rot[,1:3] , type="l", xlab="Frequency", ylab="")
#We can get the PCs themselves from the columns of the object meatpca$x. Let's use
#the first four PCs to predict the response:
mt.pcr <- lm (fat ~ meatpca$x [,1:4], meatspec [1:172,])
rmse(mt.pcr$fit, meatspec$fat [1:172])
#We do not expect as good a fit using only four variables instead of the 100. Even so,
#considering that, the fit is not much worse than the much bigger models.
#PCR is an example of shrinkage estimation. Let's see where the name comes from.
#We plot the 100 slope coefficients for the full least squares fit:
plot(mt.lm$coef,ylab="Coefficient")
#We see that the coefficients range is in the
#thousands and that the adjacent coefficients can be very different.
#The PCR model is y=Zb+e which is y=XUb+e We compute Ub and plot it
svb <- meatpca$rot [,1:4] %*% mt.pcr$coef[-1]
plot (svb, ylab="Coefficient")
#Why use four PCs here?
plot(meatpca$sdev[1:10],type="l",ylab="SD of PC",xlab="PC number")
#Now let's see how well the test sample
#is predicted. The default version of PCs used here centers the predictors so we need to
#impose the same centering (using the means of the training sample) on the predictors
tx <- as.matrix (sweep (meatspec[173:215,-101], 2, mm[-101]))
nx <- tx %*% meatpca$rot[,1:4]
pv <- cbind (1, nx) %*% mode13$coef
rmse (pv, meatspec$fat [173:215])
#It turns out that we can do better by using more PCs¡ªwe
#figure out how many would give the best result on the test sample:
rmsmeat <- numeric(50)
for (i in 1:50) {
nx <- tx %*% meatpca$rot[,1:i]
mode13 <- lm (fat~meatpca$x[,1:i] , meatspec[1:172,])
pv <- cbind (1, nx) %*% mode13$coef
rmsmeat[i] <- rmse(pv, meatspec$fat[173:215] )
}
plot (rmsmeat, ylab="Test RMS")
which.min (rmsmeat)
min (rmsmeat)
#Of course, in practice we would
#not have access to the test sample in advance and so we would not know to use 27
#components. We could, of course, reserve part of our original dataset for testing. This is
#sometimes called a validation sample. This is a reasonable strategy, but the downside is
#that we lose this sample from our estimation which degrades its quality. Furthermore,
#there is the question of which and how many observations should go into the validation
#sample. We can avoid this dilemma with the use of crossvalidation (CV).
#The pls.pcr package can compute this CV.
# 4. Partial least square 偏最小二乘模型建立,专业数据分析代写
library(pls)
plsg <-plsr(fat~.-1,data=mtc,50,validation="LOO")
summary(plsg)
#The validation results here are root mean squared error of prediction (RMSEP).
#CV is the ordinary CV estimate, and adjCV is a bias-corrected
#CV estimate (Mevik and Cederkvist 2004) (For a LOO CV, there is virtually no difference).
#It is often simpler to judge the RMSEPs by plotting them:
plot(RMSEP(plsg),legendpos="topright")
#we need around 14 components as suggested by the
#crossvalidated estimate of the RMSEP
plsg2 <-plsr(fat~.,data=mtc,14,validation="LOO")
plot(plsg2, ncomp =14, asp = 1, line = TRUE)
ypred<-predict(plsg2, ncomp = 14, newdata = mtc)
rmse (ypred,yc)
ytpred<-predict(plsg2, ncomp = 14, newdata = mtc2)
rmse (ytpred,yt)
#comparison between with RR 与岭回归结果进行对比
c(ytpredg[13], ytpred[13]+ mean(meatspec$fat[1:172]), meatspec$fat [172+13] )
#The PLS prediction (second) is close to the truth (third), but the ridge prediction is bad.
If
#we remove this case:
rmse (ytpredg[-13], meatspec$fat[173:215] [-13])
#now RR is better than PLS
需要rcode代写,R语言作业代写的同学,欢迎随时联系我们,您的问题都将在这里解决